Thermodynamic Stability of Gadolinia-Doped Ceria Thin Film Electrolytes for Micro-Solid Oxide Fuel Cells
نویسندگان
چکیده
Next-generation micro-solid oxide fuel cells for portable devices require nanocrystalline thin-film electrolytes in order to allow fuel cell fabrication on chips at a low operation temperature and with high power outputs. In this study, nanocrystalline gadolinia-doped ceria (Ce0.8Gd0.2O1.9!x) thin-film electrolytes are fabricated and their electrical conductivity and thermodynamic stability are evaluated with respect to microstructure. Nanocrystalline gadolinia-doped ceria thin-film material (Ce0.8Gd0.2 O1.9!x) exhibits a larger amount of defects due to strain in the film than state-of-the-art microcrystalline bulk material. This strain in the film decreases the ionic conductivity of this ionic O2! conductor. The thermodynamic stability of a nanocrystalline ceria solid solution with 65 nm grain size is reduced compared with microcrystalline material with 3–5 lm grain size. Nanocrystalline spray-pyrolyzed and PLD Ce0.8Gd0.2O1.9!x thin films with average grain sizes larger than 70 nm show predominantly ionic conductivity for temperatures lower than 7001C, which is high enough to be potentially used as electrolytes in low to intermediate-temperature micro-solid oxide fuel cells.
منابع مشابه
Special quasirandom structures for gadolinia-doped ceria and related materials.
Gadolinia doped ceria in its doped or strained form is considered to be an electrolyte for solid oxide fuel cell applications. The simulation of the defect processes in these materials is complicated by the random distribution of the constituent atoms. We propose the use of the special quasirandom structure (SQS) approach as a computationally efficient way to describe the random nature of the l...
متن کاملModel Development for Gadolinia- Doped Ceria-based Anodes in Solid Oxide Fuel Cells
Title of Document: MODEL DEVELOPMENT FOR GADOLINIADOPED CERIA-BASED ANODES IN SOLID OXIDE FUEL CELLS Lei Wang, Doctor of Philosophy, 2014 Directed By: Professor Gregory S. Jackson, Department of Mechanical Engineering Intermediate temperature (500 700 °C) solid oxide fuel cells (IT-SOFCs) with gadolinia-doped ceria (GDC) electrolytes have significant commercial potential due to reduced material...
متن کاملProton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer
An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantl...
متن کاملFabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition
Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen per...
متن کاملImprovement of ionic conductivity of gadolinium doped ceria electrolyte with nano CuO sintering aid
Gadanium doped cerium oxide ceramic (GDC) is widely used as solid electrolytes in solid oxide fuel cells because of its high oxygen ion conductivity. In this study, the effect of addition of nano CuO as a sintering aid on the properties of GDC electrolyte were investigated. For this purpose, 0.2, 0.5, and 1% mole of nano Cuo was added to GDC ceramics, which was synthesized by the solid-state me...
متن کامل